Filtering News from Document Streams: Evaluation Aspects and Modeled Stream Utility
نویسنده
چکیده
Events like hurricanes, earthquakes, or accidents can impact a large number of people. Not only are people in the immediate vicinity of the event affected, but concerns about their well-being are shared by the local government and well-wishers across the world. The latest information about news events could be of use to government and aid agencies in order to make informed decisions on providing necessary support, security and relief. The general public avails of news updates via dedicated news feeds or broadcasts, and lately, via social media services like Facebook or Twitter. Retrieving the latest information about newsworthy events from the world-wide web is thus of importance to a large section of society. As new content on a multitude of topics is continuously being published on the web, specific event related information needs to be filtered from the resulting stream of documents. We present in this thesis, a user-centric evaluation measure for evaluating systems that filter news related information from document streams. Our proposed evaluation measure, Modeled Stream Utility (MSU), models users accessing information from a stream of sentences produced by a news update filtering system. The user model allows for simulating a large number of users with different characteristic stream browsing behavior. Through simulation, MSU estimates the utility of a system for an average user browsing a stream of sentences. Our results show that system performance is sensitive to a user population’s stream browsing behavior and that existing evaluation metrics correspond to very specific types of user behavior. To evaluate systems that filter sentences from a document stream, we need a set of judged sentences. This judged set is a subset of all the sentences returned by all systems, and is typically constructed by pooling together the highest quality sentences, as determined by respective system assigned scores for each sentence. Sentences in the pool are manually assessed and the resulting set of judged sentences is then used to compute system performance metrics. In this thesis, we investigate the effect of including duplicates of judged sentences, into the judged set, on system performance evaluation. We also develop an alternative pooling methodology, that given the MSU user model, selects sentences for pooling based on the probability of a sentences being read by modeled users. Our research lays the foundation for interesting future work for utilizing user-models in different aspects of evaluation of stream filtering systems. The MSU measure enables incorporation of different user models. Furthermore, the applicability of MSU could be extended through calibration based on user behavior.
منابع مشابه
A Framework for Clustering Massive Text and Categorical Data Streams
Many applications such as news group filtering, text crawling, and document organization require real time clustering and segmentation of text data records. The categorical data stream clustering problem also has a number of applications to the problems of customer segmentation and real time trend analysis. We will present an online approach for clustering massive text and categorical data stre...
متن کاملUsing Stream Features for Instant Document Filtering
In this paper, we discuss how event processing technologies can be employed for real-time text stream processing and information filtering in the context of the TREC 2012 microblog task. After introducing basic characteristics of stream and event processing, the technical architecture of our text stream analysis engine is presented. Employing wellknown term weighting schemes from document-centr...
متن کاملEvaluating document filtering systems over time
Document filtering is a popular task in information retrieval. A stream of documents arriving over time is filtered for documents relevant to a set of topics. The distinguishing feature of document filtering is the temporal aspect introduced by the stream of documents. Document filtering systems, up to now, have been evaluated in terms of traditional metrics like (microor macro-averaged) precis...
متن کاملCross-Lingual Topic Alignment in Time Series Japanese / Chinese News
Among various types of recent information explosion, that in news stream is also a kind of serious problems. This paper studies issues regarding topic modeling of information flow in multilingual news streams. If someone wants to find differences in the topics of Japanese news and Chinese news, it is usually necessary for him/her to carefully watch every article in Japanese and Chinese news str...
متن کاملMicroblogging Temporal Summarization: Filtering Important Twitter Updates for Breaking News
Title of dissertation: Microblogging Temporal Summarization: Filtering Important Twitter Updates for Breaking News Tan Xu, Doctor of Philosophy, 2015 Dissertation directed by: Professor Douglas W. Oard College of Information Studies While news stories are an important traditional medium to broadcast and consume news, microblogging has recently emerged as a place where people can discuss, dissem...
متن کامل